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Universality of power-law exponents by means of maximum-likelihood estimation
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Power-law-type distributions are extensively found when studying the behavior of many complex systems.
However, due to limitations in data acquisition, empirical datasets often only cover a narrow range of observation,
making it difficult to establish power-law behavior unambiguously. In this work we present a statistical procedure
to merge different datasets, with two different aims. First, we obtain a broader fitting range for the statistics
of different experiments or observations of the same system. Second, we establish whether two or more
different systems may belong to the same universality class. By means of maximum likelihood estimation, this
methodology provides rigorous statistical information to discern whether power-law exponents characterizing
different datasets can be considered equal among them or not. This procedure is applied to the Gutenberg-Richter
law for earthquakes and for synthetic earthquakes (acoustic emission events) generated in the laboratory:
labquakes. Different earthquake catalogs have been merged finding a Gutenberg-Richter law holding for more
than eight orders of magnitude in seismic moment. The value of the exponent of the energy distribution of
labquakes depends on the material used in the compression experiments. By means of the procedure proposed
in this manuscript, we find that the Gutenberg-Richter law for earthquakes and charcoal labquakes can be
characterized by the same power-law exponent, whereas Vycor labquakes exhibit a significantly different
exponent.

DOI: 10.1103/PhysRevE.100.062106

I. INTRODUCTION

Generally speaking, a complex system can be understood
as a large number of interacting elements whose global be-
havior cannot be derived from the local laws that characterize
each of its components. The global response of the system
can be observed at different scales and the vast number of
degrees of freedom makes prediction very difficult. In this
context, a probabilistic description of the phenomenon is
needed in order to reasonably characterize it in terms of ran-
dom variables. When the response of these systems exhibits
lack of characteristic scales, it can be described in terms of
power-law-type probability density functions (PDF), f (x) ∝
x−γ , where x corresponds to the values that the random
variable that characterizes the response of the system can
take, ∝ denotes proportionality and the power-law exponent
γ acquires values larger than 1. The power law is the only
function which is invariant under any scale transformation of
the variable x [1]. This property of scale invariance confers a
description of the response of the system where there are no
characteristic scales. This common framework is very usual
in different disciplines [2,3] such as condensed matter physics
[4], economics [5], linguistics [6], geoscience [7], and, in
particular, seismology [8,9].

It has been broadly studied [10,11] that when different
complex systems present common values of all their power-
law exponents and share the same scaling functions they can
be grouped into the same universality class. Therefore, it is
important to determine these exponents rigorously, not only
to properly characterize phenomena but also to provide a good
classification into universality classes.

In practice, exponents are difficult to measure empirically.
Due to experimental limitations that distort the power-law be-
havior, the property of scale invariance can only be measured
in a limited range. Therefore, when a power-law distribution is
fitted to empirical data is more convenient to talk about local
or restricted scale invariance. In this context, the wider the
range the fitted PDF spans, the more reliable and strong this
property will be.

A paradigmatic example of power-law behavior in complex
systems is the well-known Gutenberg-Richter (GR) law for
earthquakes [12]. This law states that, above a lower cut-off
value, earthquake magnitudes follow an exponential distribu-
tion; in terms of the magnitude PDF

f (m) = (b log 10)10−b(m−mmin ) ∝ 10−bm, (1)

defined for m � mmin, with m the magnitude (moment mag-
nitude in our case), mmin the lower cut-off in magnitude, b
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is the so called b value, and log corresponds to the natural
logarithm. The general relationship between seismic moment
x and moment magnitude m is given by:

x = 10
3
2 m+9.1, (2)

measured in units of Nm [13]. The GR law is a power-law
distribution when it is written as a function of the seismic
moment x:

f (x) = 2

3

b

xmin

(
x

xmin

)−(1+ 2
3 b)

= γ − 1

xmin

(
x

xmin

)−γ

, (3)

where we conveniently define γ = 1 + 2
3 b (b > 0 and γ > 1)

and xmin corresponds to the value of the seismic moment of
the cut-off magnitude mmin [14] introduced in Eq. (2). Note
that this PDF has a domain x ∈ [xmin,+∞).

An earthquake catalog is an empirical dataset that charac-
terizes each earthquake by an array of observations: time of
occurrence, spatial coordinates, magnitude, and so on. The
magnitude mmin is usually associated to the completeness
threshold, such as all earthquakes with m � mmin are recorded
in the catalog [14]. For m < mmin, some events are missing
from the catalog due to the difficulties of detecting them
(e.g., Refs. [15,16]), especially when the seismic activity rate
suddenly increases, such as in aftershock sequences, in which
earthquake waveforms tend to overlap each other difficulting
detection [14,17–19]. This incompleteness distorts the power-
law behavior below mmin, whose value should be an upper
bound to encompass these variations.

One has to keep in mind that there also exists an upper cut-
off due to the finite-size effects [20], implying that, at a certain
value of the magnitude, there are deviations from the power-
law behavior. Consequently, strictly speaking, the range of
validity of the GR law cannot be extended up to infinity [7,21].
By ignoring which is the model that conveniently fits the tail
of the distribution, the power-law behavior has to be restricted
to an upper cut-off xmax and the PDF for the truncated GR law
is written:

f (x) = 1 − γ

x1−γ
max − x1−γ

min

x−γ , (4)

defined for x ∈ [xmin, xmax].
Recent studies regarding the acoustic emission (AE) in

compression experiments of porous glasses and minerals
[22–26] or wood [27] have focused the attention on the energy
distribution of AE events due to the similarities with the
GR law for earthquakes [21]. According to the terminology
which is used in some of these studies, we will name as
labquakes those AE events that occur during the compression
of materials.

Earthquake and labquake catalogs as well as other empir-
ical datasets in complex systems only report a limited range
of events, making it difficult to estimate parameters of the
power-law PDF accurately. In this work we try to solve this
problem by combining datasets with rigorous statistical tools,
with the goal of finding a broader range of validity when the
different datasets correspond to the same system. If different
datasets can be combined and characterized by a unique
power-law exponent, that means that the particular exponents
of each dataset are statistically compatible. When different

phenomena share the same power-law exponents for the dis-
tributions of all their observables, they can be classified into
the same universality class. Consequently, this methodology
represents a statistical technique to discern whether different
phenomena can be classified into the same universality class
or not. In order to conveniently classify earthquakes and
labquakes into the same universality class, all the observables
should be taken into account and all the corresponding ex-
ponents should be compatible. In this work we will illustrate
this methodology by focusing on the distribution of seismic
moment for earthquakes and the AE energy for labquakes.
The results will reveal whether they are candidates to be
classified into the same universality class or not, but the final
establishment of their belonging to the same universality class
would require the study of all the possible observables.

The manuscript is structured as follows: in Sec. II we
will describe the different statistical procedures that are
used in order to conveniently merge datasets and to find a
global power-law PDF. Although previous procedures to
combine independent datasets have been already proposed
[28], the approach presented in this paper is totally different.
In Sec. III we apply this methodology to different datasets
that are explained in Sec. III A and analyzed in Sec. III B for
earthquake catalogs and in Secs. III C and III D for AE data
obtained during the compression of two different materials.
In Sec. IV we present our conclusions, and details supporting
the methodology are presented in Appendixes A–D.

II. METHODS

Statistical methodology: Merging datasets

By considering nds datasets of Ni (i = 1, . . . , nds) observa-
tions each, one wants to fit a general power-law distribution
with a unique global exponent for all of them. We assume
that for the ith dataset, the variable X (seismic moment if one
works with the GR law for earthquakes or AE energy if one
works with the GR law for labquakes) follows a power-law
PDF fX [x; γi, x(i)

min, x(i)
max] given by Eq. (4) from a certain lower

cut-off x(i)
min to an upper cutt-off x(i)

max with exponent γi and
number of data ni (ni � Ni) in the range [x(i)

min, x(i)
max]. Note

that one also can consider the untruncated power-law model
for the ith dataset if x(i)

max → ∞. By means of the methods
explained in Refs. [7,29] (or, alternatively, Ref. [30]), one can
state that data from the ith dataset does not lead to the rejection
of the the power-law hypothesis for a certain range. Note that,
in the ith dataset, the variable X can acquire values in a range
typically spanning several orders of magnitude.

Generally, the procedure of merging datasets is performed
by selecting upper and lower cut-offs x(i)

min and x(i)
max [x(i)

min <

x(i)
max] for each dataset. Data outside these ranges are not

considered. All the possible combinations of cut-offs {xmin}
and {xmax} are checked with a fixed resolution (see below).
The residual coefficient of variation (CV) test can be used
to fix some upper cut-offs, thus reducing the computational
effort. For more details about the CV test, see Appendix B.

Given a set of cut-offs, datasets can be merged by consid-
ering two different models:

(i) Model α: All datasets are merged by considering a
unique global exponent � (γi = � for all datasets).
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(ii) Model β: All datasets are merged, but each one with
its own exponent γi (i = 1, . . . , nds).

Note that model α is nested in model β and the difference
in the number of parameters characterizing these models
is nβ − nα = nds − 1. Since we are interested in merging
datasets with a unique global exponent (model α), we need
enough statistical evidence that this simpler model is suitable
to fit the data. For a given set of cut-offs, the fit is performed
by means of the following protocol:

(i) Maximum likelihood estimation (MLE) of model α:
The log-likelihood function of model α can be written as:

logLα =
nds∑
i=1

ni∑
j=1

log fX
[
xi j ; �, x(i)

min, x(i)
max

]
, (5)

where xi j corresponds to the ni values of the variable X that
are in the range x(i)

min � xi j � x(i)
max in the ith dataset and � is

the global exponent. The definition of likelihood is consistent
with the fact that likelihoods from different datasets can be
combined in this way [31]. At this step, one has to find the
value �̂ of the global exponent � that maximizes the log-
likelihood expression in Eq. (5). For the particular expressions
corresponding to the truncated and untruncated power-law
PDF, see Eqs. (A2) and (A3) in Appendix A. If all the power-
law distributions are untruncated, then this exponent can be
easily found analytically [32] as

�̂ = 1 +
∑nds

i=1 ni∑nds
i=1

ni
γ̂i−1

,

where the hats denote the values of the exponents that max-
imize the log-likelihood of the particular power-law distribu-
tion (model β) and the general one in Eq. (5). If truncated
power-law distributions are considered, one has to use a
numerical method in order to determine the exponent � that
maximizes this expression [29,33].

(ii) MLE of model β: The log-likelihood function of
model β can be written as:

logLβ =
nds∑
i=1

ni∑
j=1

log fX
[
xi j ; γi, x(i)

min, x(i)
max

]
, (6)

using the same notation as in Eq. (5). For the particular
expressions corresponding to the truncated and untruncated
power-law PDFs, see Eqs. (A2) and (A3) in Appendix A. The
values of the exponents that maximize Eq. (6) are denoted
as γ̂i.

(iii) Likelihood-ratio test: We perform the likelihood ratio
test (LRT) for the models α and β in order to check whether
model α is good enough to fit data or not in comparison
with model β. For more details about the LRT see Appendix
A. If model α “wins,” then the procedure goes to step (iv).
Otherwise, this fit is discarded and a different set of cut-offs
{xmin} and {xmax} is chosen, and the procedure goes back to
step (i). Note that model α can be a good model to fit if the
particular exponents γ̂i do not exhibit large differences among
each other in relation to their uncertainty.

(iv) Goodness-of-fit test: In order to check whether it is
reasonable to consider model α as a good candidate to fit
data, we formulate the next null hypothesis H0: The vari-
able X is power-law distributed with the global exponent

�̂ for all the datasets. In this work, we are going to use
two different statistics in order to carry out the goodness-
of-fit tests: the Kolmogorov-Smirnov distance of the merged
datasets (KSDMD) and the composite Kolmogorov-Smirnov
distance (CKSD). The KSDMD statistic can be used as long
as datasets overlap each other, whereas the CKSD statistic
does not require this condition. For more details about how
these statistics are defined and how the p value of the test
is found, see Appendix C. If the resulting p value is greater
than a threshold value pc (in the present work we are going
to use pc = 0.05 and pc = 0.20), we consider this as a valid
fit and it can be stated that the variable X is power-law
distributed with exponent �̂ along all the different datasets for
the different ranges {xmin} and {xmax}. Otherwise, this fit will
not be considered as valid, a different set of cut-offs is chosen
and the procedure goes back to step (i).

When all the combinations of cut-offs have been checked,
one may have a list of valid fits. In order to determine which
one of them is considered the definitive fit, the following
procedure is carried out:

(i) The fit that covers the largest sum of orders of mag-

nitude: max {∑nds
i=1 log10 [ x(i)

max

x(i)
min

]} is chosen. If the power-law fit

is untruncated, then x(i)
max can be substituted by the maximum

observed value x(i)
top. If there is a unique candidate with a max-

imum number of orders of magnitude, then this is considered
as the definitive global fit; otherwise, the procedure goes to
the next step (ii).

(ii) The fit with the broadest global range: max {max [x(i)
max]

min [x(i)
min]

}
for i = 1, . . . , nds is chosen. If there is a unique candidate,
then this is considered as the definitive global fit; otherwise,
the procedure goes to the next step (iii).

(iii) The fit with the maximum number of data N =∑nds
i=1 ni is considered as the definitive global fit.
By means of these three steps, a unique fit has been found

for all the datasets analyzed in this work. Nevertheless, one
could deal with datasets in which more conditions are needed
in order to choose a definitive fit unambiguously.

At the end of this procedure, if a solution is found, then
one is able to state that the datasets that conform the global
fit correspond to phenomena that are candidates to be be
classified into the same universality class, at least regarding
the observable X . If no combination of cut-offs is found to
give a good fit, then it can be said that there exists at least
one catalog that corresponds to a phenomenon that must be
classified in a different universality class. The performance of
the methodology over synthetic power-law data with different
sample sizes and relative difference in exponents δγ is shown
in Appendix D.

III. APPLICATIONS

In this section we apply the methodology of merging
datasets to different earthquake and labquake catalogs. First,
we try to merge three earthquake catalogs. Second, a fourth
catalog of charcoal labquakes is added in order to check
whether these two phenomena are candidates to be classified
into the same universality class or not. Finally, we apply the
methodology to four catalogs of Vycor labquakes that cover
different observation windows.
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FIG. 1. Earthquake epicenters of the different catalogs. Horizon-
tal and vertical axes correspond to longitude and latitude in degrees,
respectively. (a) Full CMT catalog for the period 1977–2017 [34,35].
(b) Entire YHS A Catalog [36] of Southern California for the period
1981–2010. (c) Subcatalog corresponding to a region (YHS B) of
the YHS catalog for the Los Angeles area for the period 2000–
2010. Maps in cylindrical equal-area projection (a) and sinusoidal
projection (b) and (c), produced with Generic Mapping Tools [37].

A. Datasets

1. Earthquake catalogs

We have selected catalogs that have different completeness
magnitudes in order to cover different magnitude ranges. We
hope that a convenient combination of these datasets will give
us a larger range of validity of the GR law with a unique
exponent. Let us briefly describe the catalogs that have been
used in this work (see also Fig. 1):

(a) Global Centroid Moment Tensor (CMT) Catalog: This
catalog compiles earthquakes worldwide since 1977 [34,35],
from which we analyze the dataset until the end of 2017.
This catalog reports the values of the moment magnitude as
well as the seismic moment. Given that the seismic moment
is provided with three significant digits, the resolution of the
magnitude in the catalog is approximately �m � 10−3.

(b) Yang-Hauksson-Shearer (YHS) A: It records earth-
quakes in Southern California with m � 0 in the period 1981–
2010 [36]. This catalog does not report the seismic moment
but a preferred magnitude that is approximately converted into
seismic moment according to Eq. (2). The resolution of the
catalog is �m = 0.01.

(c) Yang-Hauksson-Shearer (YHS) B: It is a subset of
YHS A that contains the earthquakes in the region of Los
Angeles in the period 2000–2010 [36]. This LA region is
defined by the following four vertices in longitude and lati-
tude: (119◦ W, 34◦ N), (118◦ W, 35◦ N), (116◦ W, 34◦ N), and
(117◦ W, 33◦ N) (see Fig. 1). This region has been selected
because it is among the best monitored ones [15,38]. Further-
more, we selected this time period due to the better detection
of smaller earthquakes than in previous years [38], which
should reduce the completeness magnitude of the catalog [15].
The resolution of this catalog is the same as YHS A.

Figure 1 shows the epicentral locations of the earthquakes
contained in each catalog. In the statistical analysis, in order
to not to count the same earthquake more than once, the
spatio-temporal window corresponding to the YHS B catalog
has been excluded from the YHS A and the spatial [Fig.
1(b)] and temporal window corresponding to the full YSH
catalogue (A+B) has been excluded from the CMT catalog.

2. Labquake catalogs

We performed uniaxial compression experiments of porous
materials in a conventional test machine Z005 (Zwick/Roell).
Samples with no lateral confinement were placed between
two plates that approached each other at a certain constant
displacement rate ż. Simultaneous to the compression, record-
ing of an AE signal was performed by using a piezoelectric
transducer embedded in one of the compression plates. The
electric signal U (t ) was pre-amplified, band filtered (between
20 kHz and 2 MHz), and analyzed by means of a PCI-2
acquisition system from Euro Physical Acoustics (Mistras
Group) with an AD card working at 40 megasamples per
second with 18-bit precision [39]. Signal preamplification was
necessary to record small AE events. Some values of the
preamplified signal were so large that could not be detected
correctly by the acquisition system. This fact led to signal
saturation and, consequently, to an underestimated energy of
the AE event [32]. Recording of data stopped when a big
failure event occurred and the sample got destroyed.

An AE event (often called AE hit in specialized AE lit-
erature) starts at the time t j when the signal U (t ) exceeds
a fixed detection threshold and finishes at time t j + τ j when
the signal remains below threshold from t j + τ j to at least
t j + τ j + 200 μs. The energy Ej of each event is determined
as Ej = 1

R

∫ t j+τ j

t j
U 2(t )dt , where R is a reference resistance of

10 k	. This AE energy corresponds to the radiated energy
received by the transducer. At the end of an experiment, a
catalog of events is collected, each of them characterized by a
time of occurrence t , energy E , and duration τ .

Experiments were performed with two different materials:
(i) Charcoal: One experiment with a prismatic char-

coal sample (basis of 8.47 mm × 5.96 mm and height
H = 14.22 mm) was performed at a constant rate ż =
0.005 mm/min with a preamplification of 40 dB and a value
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FIG. 2. Estimated survivor functions S(x) of the seismic moment for each catalog (a) and for the merged catalogs (b). Estimated PDFs
f (x) of the Gutenberg-Richter law for each catalog (c) and for the merged catalogs (d). The merged histograms are plotted by following the
procedure explained in Ref. [32]. Fits are represented by solid black lines. Top axes represent the same scale in moment magnitude. Note that
earthquakes from the CMT and YSH A catalogs below their respective lower cut-offs xmin have been excluded in the bottom plots.

of 24 dB for the detection threshold referring to the signal
U (t ), not the preamplified signal (in such a way that after
preamplification the threshold moves to 64 dB). This value
of the threshold was set as low as possible in order to avoid
parasitic noise. The sample corresponded to commercially
available fine art fusains (HB 5 mm, NITRAM, Canada).

(ii) Vycor: We use the labquake catalogs of Ref. [32], in
which the authors performed four experiments with cylin-
drical samples (diameters 
 = 4.45 mm and heights H =
8 mm) of Vycor (a mesoporous silica glass with 40% poros-
ity) at a constant rate ż = 0.005 mm/min. Before compres-
sion, samples were cleaned with a 30% solution of H2O2

during 24 h and dried at 130◦ C. The four experiments were
performed with the following preamplification values: 60,
40, 20, and 0 dB, and the respective values of the detection
threshold, 23, 43, 63, and 83 dB (in such a way that after
preamplification the threshold always moves to 83 dB). This
value of the threshold was set as low as possible in order to
avoid parasitic noise.

An important difference between these two materials is
the degree of heterogeneity. The synthetic mesoporous silica
structure of Vycor is much more homogeneous than the one
of the charcoal, which has been formed through different
natural processes and may contain voids and macropores.
These structural differences may lead to differences in the
energy exponents [40].

B. Merging earthquake catalogs

In its usual form, the GR law fits a power-law model
that contemplates a unique power-law exponent. Nevertheless,
several studies have elucidated the existence of double-power-
law behavior in the GR law for global seismicity [7,41,42].
Authors in Ref. [7] claim that a truncated power law with
exponent γ � 1.66 cannot be rejected up to mmax � 7.4 and
a second power-law tail emerges from m′

min = 7.67 with an
exponent γ ′ = 2.1 ± 0.1.
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FIG. 3. Estimated PDF f (x) of the radiated energy for the merged earthquake and charcoal labquake catalogs. The fit is represented by a
solid black line. The methodology to merge the three earthquake catalogs is the same as in the rest of plots, whereas the addition of the charcoal
catalog to this fit has been done ad hoc by conveniently rescaling both parts (those corresponding to charcoal and earthquakes, respectively).
Each part has been divided by an effective number of events by assuming that the probability in each part corresponds to that obtained from
a global power-law exponent with exponent �̂ from x(0)

min to x(3)
max. Note that events from the CMT, YSH A and YSH B catalogs below their

respective lower cut-offs xmin have been excluded in the plot.

We have checked these results by using the residual CV
test. Furthermore, we have been able to establish that, by
fixing the upper truncation at mmax = m′

min = 7.67, the trun-
cated power-law hypothesis cannot be rejected (see Table I).
Consequently, if one wants to fit a power-law PDF with a
unique exponent, one has to exclude all those earthquakes
with m � mmax = 7.67. For the CMT catalog, we fix the
upper cut-off xmax = 10

3
2 mmax+9.1 and we work by following

the same procedure described in the previous section. The
rest of catalogs can be safely fitted by untruncated power-law
PDFs because the CV test does not reject the hypothesis of a
unique power-law tail and the magnitudes which are studied
are considerably smaller than those in the CMT catalog.

Thus, we consider two untruncated power-law distributions
and a third one which is truncated for the CMT catalog
[see Figs. 2(a) and 2(c)]. For each decade, we sample five
values of x(i)

min equally spaced in logarithmic scale, and all
the possible combinations of cut-offs x(1)

min, x(2)
min, and x(3)

min are
checked for a fixed upper-truncation x(3)

max. The labels (1), (2),
and (3) correspond to the catalogs YSH B, YSH A, and CMT,
respectively.

In Table II we present the results of the global fit for models
α and β. The values of the statistics as well as the resulting
p values are shown in Table III. It can be observed that, for
this particular set of cut-offs, the CKSD test has a smaller
p value and can be considered to be a more strict statistic
with respect the KSDMD (in agreement with the results in
Appendix D). No fit with a smaller p value has been found
for the KSDMD statistic, and the fit shown in Table II has a
p value that exceeds both pc = 0.05 and pc = 0.20. A b value
very close to one holds for more than 8 orders of magnitude
in seismic moment from mmin = 1.93 to mmax = 7.67 [see
Figs. 2(b) and 2(d)]. Due to the upper-truncation, the value
of the global exponent is not exactly the same as the value

of the harmonic mean of the particular exponents [32,43].
The results for the CKSD statistic do not show remarkable
differences if the critical p value is set to pc = 0.20 (see
Table II). We consider that the definitive fit is the one whose
goodness-of-fit test has been performed with a threshold value
of pc = 0.20. Given the number of data for each dataset and
the relative difference among exponents (around 1%), these
results are compatible with the ones obtained from synthetic
catalogs shown in Appendix D.

C. Merging earthquakes and charcoal labquake catalogs

Motivated by the fact that the power-law exponents of
earthquake catalogs and charcoal labquakes are very similar
(see Table I), we apply this methodology by adding also the
charcoal catalog.

At this step it is important to stress the fact that the seismic
moment does not correspond with the radiated energy Er

by the earthquake, which would be the reasonable energy to
compare with the AE energy. Whether the ratio of seismically
radiated energy over the seismic moment is independent on
the moment magnitude is still an unsolved question [44].
A constant ratio would imply that the static stress drop is
constant for all the earthquakes. This ratio may depend on dif-
ferent earthquake parameters such as moment magnitude and
the depth of the source [45–48]. On the contrary, some authors
argue that the seismically radiated energy is in some cases
underestimated and this ratio can be considered as constant
[49–52]. For our study, we are going to consider this ratio as
constant so that the values of the seismic moment should just
be multiplied by an unique factor. The value of this unique
factor is Er

M = 10−4.6, see Ref. [53], where M is the seismic
moment (previously called x). In this case, x corresponds to
the energy radiated in seismic waves by earthquakes Er and
the AE energy.
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FIG. 4. Estimated survivor function S(x) of the Gutenberg-Richter law for each Vycor catalog (a) and for the merged Vycor catalogs (b).
Estimated PDFs f (x) of the Gutenberg-Richter law for each Vycor catalog (c) and for the merged catalogs (d). The merged histograms are
plotted by following the procedure explained in Ref. [32]. Fits are represented by solid black lines. In the bottom plots, events corresponding
to the experiments performed at 40, 20, and 0 dB below their respective lower cut-offs as well as those corresponding to the experiments
performed at 60, 40, and 20 dB above their respective upper cut-offs have been excluded.

It can be shown that, for both models α and β, multiplying
the variable by a constant factor only introduces a constant
term in the log-likelihood that does not change neither the

maximum nor the difference of the log-likelihoods. As the
CKSD statistic is a weighted average of the particular KS
distances of each dataset, it does not change either. Note

TABLE I. Results of fitting the GR law for each individual catalog. The total number of earthquakes in each catalog is given by N , whereas
the number of data entering into the fit is n. The value mtop corresponds to the maximum observed value for each catalog. The GR law is
valid for each catalog from [mmin, mmax] with a particular b value. mmax has no upper limit for any of the fits except for the CMT catalog,
in which m(3)

max = 7.67 (x(3)
max = 4.03 × 1020 Nm). For the charcoal catalog, x represents the energy collected by the transducer (instead of the

seismic moment). No magnitude scale is provided in this case. Numbers in parentheses correspond to the error bar estimated with one standard
deviation in the scale given by the last digit shown. The p value of the fits has been computed with 103 simulations and pc = 0.05. For
completeness, values of cut-offs in seismic moment x and power-law exponents γ̂ have been included.

N n mmin xmin (Nm) mtop xtop(Nm) b̂ value γ̂ pfit

(0) Charcoal 101524 18625 — 4.93 × 10−18 — 1.86 × 10−11 0.984(8) 1.656(5) 0.088(9)
(1) YHS B 26330 3412 1.93 1012 5.39 1.53 × 1017 0.99(3) 1.66(2) 0.072(8)
(2) YHS A 152924 4353 3.17 7.08 × 1013 7.20 7.94 × 1019 0.98(1) 1.65(1) 0.080(9)
(3) CMT 48637 22336 5.33 1.24 × 1017 9.08 5.25 × 1022 0.982(7) 1.655(5) 0.36(2)
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TABLE II. Results of fitting the models α and β to the earthquake catalogs when doing the goodness-of-fit test with the CKSD statistic
and different values of pc. If the goodness-of-fit test is performed with the KSDMD statistic, the same set of cut-offs as the fit done by using
CKSD0.20 is found (see Table III). Same notation as in Table I. b̂g and �̂ correspond to the fitted global b value and global power-law exponent,

respectively. The number of orders of magnitude OM = log10 [ x(i)
max

x(i)
min

] covered by each fit as well as for model α is also shown. The value x(i)
max

is replaced for x(i)
top for untruncated fits. Note that the range of the merged fit m(3)

max − m(1)
min = 7.67 − 1.93 = 5.74 units of magnitude, which

correspond to 8.6 orders of magnitude in seismic moment.

pc = 0.05 n mmin xmin (Nm) OM b̂ value γ̂ pfit

(1) YHS B 3412 1.93 1012 5.18 0.99(1) 1.633(7) 0.072(8)
(2) YHS A 3500 3.27 1014 5.90 0.99(2) 1.66(1) 0.089(9)
(3) CMT 19003 5.40 1.58 × 1017 3.40 0.98(8) 1.655(5) 0.26(1)

Model α N
∑

OM b̂g value �̂ pfit

25915 1.93 1012 14.48 0.991(6) 1.661(4) 0.079(9)

pc = 0.20 n mmin xmin (Nm) OM b̂ value γ̂ pfit

(1) YHS B 3412 1.93 1012 5.18 0.99(1) 1.633(7) 0.072(8)
(2) YHS A 3500 3.27 1014 5.90 0.99(2) 1.66(1) 0.089(9)
(3) CMT 10422 5.67 3.98 × 1017 3 1.00(1) 1.663(7) 0.62(2)

Model α N
∑

OM b̂g value �̂ pfit

17334 1.93 1012 14.08 1.000(8) 1.667(5) 0.326(5)

that, as the data do not overlap, the KSDMD cannot be used.
Therefore, the results shown in Table I would not change
except for the values of the cut-offs.

The CV test does not reject the hypothesis of a unique
power-law tail for the charcoal catalog and an untruncated
power-law model is considered for this catalog. For each
decade, five different values of x(i)

min equally spaced in loga-
rithmic scale, for a fixed upper-truncation x(3)

max, were checked
and all the possible combinations of cut-offs x(0)

min, x(1)
min, x(2)

min,
and x(3)

min were checked for a fixed upper-truncation x(3)
max. The

labels (0), (1), (2), and (3) correspond to the catalogs of the
charcoal experiment, YSH B, YSH A, and CMT, respectively.
In Table IV we present the results of the global fit for the
CKSD statistic. The value of the global exponent is approxi-
mately in agreement with the harmonic mean of the particular
exponents of the GR law for each catalog [32]. The results do
not show remarkable differences if the critical p value is set to
pc = 0.20 (see Table IV). We consider that the definitive fit is
the one whose goodness-of-fit test has been performed with a

TABLE III. Results of fitting model α to all the catalogs when
doing the goodness-of-fit test with the KSDMD and the CKSD
statistics for pc = 0.05 (same cut-offs for all the catalogs) and for the
set of cut-offs for which the p value is larger or equal than pc = 0.20
for the CKSD statistic. KSDMD has a unique fit because the fit
already exceeds pc = 0.20. For the definition of De, see Appendix C.
The remaining notation is as in previous tables.

De pfit

KSDMD 0.018487 0.20(1)
CKSD0.05 3.25082 0.079(9)
CKSD0.20 2.778202 0.326(5)

threshold value of pc = 0.20. The fit is shown in Fig. 3. These
results are compatible with the ones obtained from synthetic
catalogs shown in Appendix D.

D. Merging Vycor labquake catalogs

The values of the particular exponents γi of Vycor
labquake catalogs differ remarkably from those found for
earthquakes and charcoal labquakes [32]. No combination of
the cut-offs has lead to a good fit if Vycor labquakes ar merged
with charcoal labquakes or earthquakes. Therefore, Vycor
labquakes can be considered to be in a different universality
class.

Due to the limitations due to saturation effects for high-
energy AE events, it is convenient to check whether it is
necessary an upper truncation for the power-law regime [see
Figs. 4(a) and 4(c)]. The residual CV test reveals the upper
truncations of the experiments performed at 60, 40, and 0 dB
but it does not provide conclusive results for the experiment at
20 dB. In order to explore fewer combinations of cut-offs, thus
reducing the computation time, we fix the upper truncations
x(0)

max, x(1)
max, and x(3)

max, whereas x(2)
max is considered as a free pa-

rameter. The labels (0), (1), (2), and (3) correspond to the ex-
periments performed at 60, 40, 20, and 0 dB, respectively. Five
intervals per decade equally spaced in logarithmic scale are
sampled for each catalog and all the possible combinations of
cut-offs, x(0)

min, x(1)
min, x(2)

min, x(2)
max, and x(3)

min, are checked for fixed
upper-truncations x(0)

max, x(1)
max, and x(3)

max.
In Table V we present the results of the global fits for

Vycor catalogs for the KSDMD and the CKSD statistics. In
both cases, the global exponents are very similar but the fit
performed with the KSDMD statistic maximizes the sum of

orders of magnitude
∑nds

i=1 log10 [ x(i)
max

x(i)
min

]. The same combination
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TABLE IV. Results of fitting models α and β to the charcoal and earthquake datasets for two different values of pc. Same notation as in
previous tables. Note that x represents the radiated energy in seismic waves by earthquakes and the radiated AE energy.

pc = 0.05 n mmin xmin (Nm) OM b̂ value γ̂ pfit

(0) Charcoal 15906 — 6.31 × 10−18 6.47 0.988(8) 1.658(5) 0.15(1)
(1) YHS B 1353 2.33 9.99 × 107 4.58 0.98(3) 1.66(2) 0.10(1)
(2) YHS A 234 4.47 1.59 × 1011 4.10 0.98(6) 1.65(4) 0.62(2)
(3) CMT 7689 5.80 1.59 × 1013 2.80 1.00(1) 1.667(9) 0.393(5)

Model α N
∑

OM b̂g value �̂ pfit

CKSD De = 3.589973 25182 6.3 × 10−18 17.95 1.003(6) 1.669(4) 0.057(7)

pc = 0.20 n mmin xmin (Nm) OM b̂ value γ̂ pfit

(0) Charcoal 3555 — 6.31 × 10−17 5.47 1.04(2) 1.69(1) 0.88(1)
(1) YHS B 1007 2.47 1.59 × 108 4.38 0.99(3) 1.66(2) 0.058(7)
(2) YHS A 234 4.47 1.59 × 1011 4.10 0.98(6) 1.65(4) 0.62(2)
(3) CMT 3014 6.20 6.33 × 1013 2.20 1.00(2) 1.67(2) 0.59(2)

Model α N
∑

OM b̂g value �̂ pfit

CKSD De = 2.998867 7810 6.3 × 10−17 16.15 1.03(1) 1.688(8) 0.21(1)

of cut-offs would not be a good fit if the CKSD statistic were
used instead. This fact can be justified by the performance
of the method for synthetic data by applying the goodness-

of-fit test with both statistics. The goodness-of-fit test for
the KSDMD statistic tends to exhibit nonrejectable p values
for the same datasets for which the CKSD statistic clearly

TABLE V. Results of fitting models α and β to the Vycor Labquake catalogs when doing the goodness-of-fit test with the KSDMD and the
CKSD statistics and different values of pc. KSDMD has a unique fit because the fit already exceed pc = 0.20. Same notation as in previous
tables.

pc = 0.20 n xmin (aJ) xtop (aJ) xmax (aJ) OM γ̂ pfit

(0) PRE 60 24338 1.58 2.66 × 107 5.37 × 105 5.53 1.351(2) 0.080(6)
(1) PRE 40 5083 158.489 1.82 × 108 15860 2.00 1.34(1) 0.087(9)
(2) PRE 20 263 6309.57 3.76 × 109 109 5.20 1.30(2) 0.67(1)
(3) PRE 0 321 6.31 × 105 2.62 × 1010 3.19 × 108 2.70 1.31(1) 0.25(1)

Model α N
∑

OM �̂

KSDMD De = 0.005911 30005 1.58 2.62 × 1010 109 15.43 1.350(2) 0.20(1)

pc = 0.05 n xmin (aJ) xtop (aJ) xmax (aJ) OM γ̂ pfit

(0) PRE 60 24338 1.58 2.66 × 107 5.37 × 105 5.53 1.351(2) 0.080(6)
(1) PRE 40 4179 251.189 1.82 × 108 15860 1.80 1.35(1) 0.19(1)
(2) PRE 20 181 2.51 × 104 3.76 × 109 2.51 × 109 5 1.29(3) 0.18(1)
(3) PRE 0 198 2.51 × 106 2.62 × 1010 3.19 × 108 2.10 1.36(6) 0.36(2)

Model α N
∑

OM �̂

CKSD De = 3.362608 28896 1.58 2.62 × 1010 2.51 × 109 14.43 1.351(2) 0.052(7)

pc = 0.20 n xmin (aJ) xtop (aJ) xmax (aJ) OM γ̂ pfit

(0) PRE 60 20778 2.51 2.66 × 107 5.37 × 105 5.33 1.354(3) 0.51(2)
(1) PRE 40 3404 398.107 1.82 × 108 15860 1.60 1.36(2) 0.36(2)
(2) PRE 20 155 3.98 × 104 3.76 × 109 109 4.40 1.32(4) 0.20(1)
(3) PRE 0 159 3.98 × 106 2.62 × 1010 3.19 × 108 1.90 1.34(7) 0.29(1)

Model α N
∑

OM �̂

CKSD De = 2.586434 24496 2.51 2.62 × 1010 109 13.23 1.354(2) 0.20(1)
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rejects the null hypothesis. See Appendix D for more details.
Although the fit performed with the KSDMD covers a larger
number of orders magnitude, the definitive fit will be the one
performed with the CKSD and pc = 0.20 (see Table V). Given
that the ranges covered by the other acceptable fits lead to the
rejection of the global power-law hypothesis when the CKSD
is used with pc = 0.20, this fit is more restrictive than the
other ones (see Appendix D) and it is the “safest” choice.
The definitive fit is shown in Fig. 4(b) and 4(d) and covers
about nine orders of magnitude in energy with a number of
data N = 24 496 entering into the fit.

IV. CONCLUSIONS

We have presented a statistical procedure to merge dif-
ferent datasets in order to validate the existence of universal
power-law exponents across different scales or phenomena.
This methodology can be useful in the study of different
complex systems in order to check whether the power-law
exponents obtained via maximum likelihood estimation are
statistically compatible among them or not. Therefore, the
procedure presented in this paper provides a statistical tool
that enables us to establish whether different complex systems
can be classified into the same universality class or not.

In this work, the methodology has been applied to the
Gutenberg-Ricther law for earthquakes and labquakes. By
merging earthquake catalogs, a global power law with a global
exponent � = 1.667 holds for more than eight orders of mag-
nitude in seismic moment (from mmin = 1.93 to mmax = 7.67
in moment magnitude). To our knowledge, this is the broadest
fitting range that has been found for the Gutenberg-Richter
law for earthquakes with a unique value of the exponent [54].
There are catalogs of tiny mining-induced earthquakes which
exhibit a much smaller completeness magnitude [55] than the
ones of natural seismicity used in this work. They were not
considered here because they are not currently public and
show b values significantly different [56] from the one found
here, which would result in nonacceptable fits when merging
them with the rest of catalogs, possibly pointing to a different
universality class. Future works involving different earth-
quake catalogs can be carried out in order to find a broader
fitting range of the Gutenbrg-Richter law and also to check
whether different regions have compatible power-law expo-
nents or not. This kind of studies would be of interest in order
to statistically strengthen the geological arguments that justify
the difference in the b values observed in some regions [43].

Earthquake catalogs have been also merged with a charcoal
labquake catalog with a global power-law exponent � =
1.688 suggesting that these different systems might be clas-
sified into the same universality class. Further investigations
involving different observables, such as the distribution of
waiting times (time between consecutive events), might be
necessary in order to properly classify charcoal labquakes and
real earthquakes into the same universality class.

A previous methodology for merging datasets was not able
to find a good fit for the Gutenberg-Richter law for the four
Vycor Labquake catalogs [32]. The previous procedure did
not take into account the fact that the cut-offs of the merged
catalogs could be different to those that limited the power-law
regime for the individual catalogs. With the methodology

exposed in this paper, which allows to consider different
cut-offs, these Vycor labquake catalogs have been merged and
a GR law with exponent � = 1.35 for the energy AE events
has been found to hold for nine orders of magnitude. As it
was proposed in Ref. [40], the labquakes in this material have
been found to belong to a different universality class than
earthquakes and charcoal labquakes.
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APPENDIX A: LIKELIHOOD RATIO TEST

The LRT is a statistical procedure used to check whether it
is worth using a statistical model α (characterized by a set of
nα parameters) which is nested into a more general statistical
model β (characterized by a set of nβ parameters). The null
hypothesis of this test states that the simpler model α is good
enough to describe the data and a more general model β does
not provide a significant improvement. In order to perform this
test, the likelihood ratio is defined as:

R = log

(
L̂β

L̂α

)
= log L̂β − log L̂α, (A1)

where log is the natural logarithm and the hats denote that the
likelihoods Lα and Lβ are evaluated at those values of the set
of parameters for which they reach their maximum values.

Although not all the regularity conditions exposed in
Ref. [31] are satisfied when dealing with power-law PDFs, it
has been numerically tested that the statistic 2R follows a chi-
squared distribution with nβ − nα > 0 degrees of freedom, at
least for the largest percentiles [21]. Once the significance
level of the test has been fixed, one is able to determine the
critical value 2Rc. If the empirical value 2Re is below this
threshold, then one can consider that there are not enough
statistical evidences to say that the more complex model β

is needed in order to describe the data. In this situation,
due to its simplicity, model α is preferable to fit data. This
procedure can be naively understood as a statistical version of
the Occam’s razor criterion. Note that the rejection of the null
hypothesis does not imply the rejection of model α as a fit to
data, on the contrary, the “acceptance” of model α does not
imply that it is a good fit to the data. The test is just a relative
comparison between two models.

We present the expressions that are necessary to compute
the statistic of the likelihood ratio test in this work. The log-
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likelihood for the untruncated PDF in Eq. (3) is written:

logLuntrunc(x; xmin, γ ) = n log

(
γ − 1

x1−γ

min

)
− γ

n∑
j=1

log x j,

(A2)

whereas the log-likelihood for the truncated PDF in Eq. (4) is
written:

logLtrunc(x; xmin, xmax, γ )

= n log

(
1 − γ

x1−γ
max − x1−γ

min

)
− γ

n∑
j=1

log x j . (A3)

These expressions are valid for model β and also for model α

replacing γ by �.

APPENDIX B: RESIDUAL COEFFICIENT
OF VARIATION TEST

A useful statistical tool to check whether an untruncated
power-law distribution is a good model to fit data in a certain
range is the so-called residual coefficient of variation (CV)
test [57].

Let us suppose that we have a variable X that acquires N
values {x}. We define x( j) as the jth value of the variable when
it is sorted in ascending order: x(1) � x(2) � · · · � x( j) � ... �
x(N ). The null hypothesis of the test states that there exists a
power-law tail given by x > x(k). The test is based on the idea
that for an untruncated power-law distribution the logarithmic
coefficient of variation Cl is close to 1:

Cl = sl

ml
, (B1)

where ml corresponds to the mean of the logarithm of the
rescaled variable l = log(x/x(k) ):

ml = 1

N − k

N∑
j=k+1

log

[
x( j)

x(k)

]
, (B2)

and s2
l is the unbiased variance:

s2
l = 1

N − k − 1

N∑
j=k+1

{
log

[
x( j)

x(k)

]
− ml

}2

. (B3)

In order to check whether the value of Cl is close to 1 or not
for a particular number of remaining data, one simulates many
samples power-law distributed with the same number of data
N − k in order to extract a distribution for Cl . It is important
to remark that the distribution of the statistic does not depend
on the power-law exponent and, therefore, it is not necessary
to estimate it previously. Once one determines the level of
significance for the test (in this case 0.05), one can obtain the
upper and lower critical values of the statistic by checking the
percentiles of the distribution of simulated values (percentiles
2.5 and 97.5 in our case). If the empirical value of Cl lies
between these two critical values, then one cannot reject the
null hypothesis of power-law tail. Otherwise, if the empirical
value is below percentile 2.5, then the power law is rejected in
favor of a truncated log-normal [58]; if the empirical value is
above percentile 97.5, then the power law is rejected but there

is no alternative. One proceeds by computing the residual Cl

for increasing values of the index k, thus analyzing different
possible starting points for the tail of the distribution.

APPENDIX C: GOODNESS-OF-FIT TEST

Determining whether the null hypothesis of consider-
ing a global exponent � is compatible with the values of
the particular fits presents some differences with the stan-
dard Kolmogorov-Smirnov goodness-of-fit test presented in
Ref. [29]. The test statistic used in this standard goodness-
of-fit test is the Kolmogorov-Smirnov distance (KSD), which
is defined as the maximum difference between the empiri-
cal and the theoretical cumulative distribution functions. In
this Appendix we expose the two different statistics for the
goodness-of-fit test that have been used for the global fit: The
first statistic is essentially an adaptation of the standard KS
test for the merged case, whereas the second method uses a
statistic which is a composition of KS distances.

When the value of the global exponent �̂ has been found
through MLE, one can understand that each dataset con-
tributes to the global PDF with a global exponent �̂ in their
particular ranges [x(i)

min, x(i)
max] (i = 1, . . . , ncat). The global

distribution can be understood as a global power-law PDF
with exponent � ranging from Xmin = min{x(i)

min} to Xmax =
max{x(i)

max}. In this situation, we need to redefine the KSD
where we have merged several datasets (the formulas below
for truncated power laws, the untruncated case is recovered in
the limit case in which the upper cut-off goes to infinity).

(i) Kolmogorov-Smirnov distance of the merged datasets
(KSDMD): This statistic can be used as long as datasets
overlap each other. Datasets can be merged by pairs by giving
a certain weight to each point from data. Depending on which
overlapping or nonoverlapping region a point from our data
comes from, each point will have a certain weight ω j , j =
1, . . . ,N . For more details about the expression of these
weights, see Ref. [32]. By sorting data in ascending order, it is
easy to construct the empirical cumulative distribution func-
tion for the merged datasets by using the following expression:

Fe[x(k)] =
∑k

j=1 ω j∑N
j=1 ω j

, (C1)

with k = 1, . . . ,N and the subindex e refers to the empirical
CDF. Note that, for a standard situation in which datasets are
not merged, all the weights would be 1 [29]. Note also that
the survivor function is Se(x(k) ) = 1 − Fe[x(k)]. Once we have
constructed the merged Fe(x), we can easily compute the KS
distance by:

D(KSDMD)
e = max

∣∣∣∣∣
(

x1−�̂ − X 1−�̂
min

X 1−�̂
max − X 1−�̂

min

)
− Fe(x)

∣∣∣∣∣, (C2)

where the values of x are taken from the ranges [x(i)
min, x(i)

max]
for each dataset.

(ii) Composite KS distance (CKSD): This second statistic
can be computed independently on whether the datasets are
overlapping each other. This statistic is constructed from the
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TABLE VI. Performance of the methodology for merging datasets explained in the main text for two untruncated power laws with
exponents γ1 and γ2, lower cut-offs x(1)

min = 1012 and x(2)
min = 1014 (arbitrary units) and sizes n1 and n2. Five different groups are presented

depending on the relative difference of the power-law exponents δγ . For these datasets, the fitted global exponent �̂ is estimated and the
LRT statistic 2Re is computed. The statistics D(CKSD)

e and D(KSDMD)
e together with their corresponding p values p-CKSD and p-KSDMD are

presented for each combination of datasets. As a complement, the z statistic and the p value pnorm-z from to the z test are also shown. p values
in bold correspond to those which are below pc = 0.05.

n1 γ1 σ1 n2 γ2 σ2 δγ (%) �̂ 2Re D(CKSD)
e p-CKSD D(KSDMD)

e p-KSDMD z pnorm-z

100 1.50 0.05 100 1.50 0.05 0 1.471 0.624 1.635 0.425 0.075 0.453 0.788 0.431
1000 1.50 0.02 1000 1.50 0.02 0 1.503 1.284 1.316 0.801 0.023 0.595 1.132 0.257
10000 1.50 0.005 10000 1.50 0.005 0 1.501 0.139 1.289 0.837 0.009 0.986 0.373 0.707

100 1.53 0.05 100 1.50 0.05 2 1.484 1.443 1.660 0.395 0.070 0.578 1.195 0.232
1000 1.53 0.02 1000 1.50 0.02 2 1.518 0.029 1.239 0.876 0.017 0.893 0.170 0.865
10000 1.53 0.005 10000 1.50 0.005 2 1.516 14.037 3.187 5 × 10−4 0.013 0.024 3.745 1.81 × 10−4

100 1.575 0.058 100 1.50 0.05 5 1.514 3.154 1.815 0.249 0.058 0.755 1.755 0.079
1000 1.575 0.018 1000 1.50 0.02 5 1.541 2.458 2.032 0.111 0.031 0.180 1.567 0.117
10000 1.575 0.006 10000 1.50 0.005 5 1.536 64.957 4.740 0 0.029 0 9.474 0

100 1.65 0.065 100 1.50 0.05 10 1.528 6.956 2.262 0.046 0.054 0.832 2.571 0.010
1000 1.65 0.02 1000 1.50 0.02 10 1.57 22.365 3.369 10−4 0.044 0.015 4.690 2.73 × 10−6

10000 1.650 0.007 10000 1.50 0.005 10 1.566 329.552 10.601 0 0.053 0 17.933 0

100 1.725 0.073 100 1.50 0.05 15 1.551 11.566 2.661 0.008 0.090 0.260 3.262 0.001
1000 1.725 0.023 1000 1.50 0.02 15 1.598 51.266 4.608 0 0.066 10−4 7.026 2.12 × 10−12

10000 1.725 0.007 10000 1.50 0.005 15 1.593 667.096 14.507 0 0.075 0 25.204 0

ncat particular KS distances:

De,i = max
x(i)

min�x�x(i)
max

∣∣∣∣∣
[

x1−�̂ − x(i)1−�̂
min

x(i)1−�̂
max − x(i)1−�̂

min

]
− Fe,i

[
x; x(i)

min, x(i)
max

]∣∣∣∣∣,
(C3)

where the subindex i refers to the ith catalog and Fe is
the empirical cumulative distribution function. In order to
compute the statistic, we perform the following summation:

D(CKSD)
e =

ncat∑
i=1

√
niDe,i, (C4)

where the factors
√

ni are due to the scaling of the KS distance
with the number of data [59].

Once the statistic is computed, one needs to determine
whether it is big or small in relation to the one found for
data sampled from a PDF with the same parameters {x(i)

min},{x(i)
max}, �, and {ni}. Data are sampled from a power-law PDF

in the range given by the ith catalog with probability qi =
ni/N , where N = ∑nds

i=1 ni. Note that the particular number
in each simulated dataset is not necessarily the empirical
one ni but the total number of data in the global fit N is
maintained. Hence, one needs a first random number to choose
the dataset i and therefore the range [x(i)

min, x(i)
max] and a second

one to generate the random power-law number in that range
with exponent �̂ [29]. When N events have been generated
according to this procedure, one finds the global exponent
�̂sim by maximizing the global log-likelihood and computes
either D(KSDMD)

sim or D(CKSD)
sim for the merged simulated datasets.

An estimation of the standard deviation of the global exponent
�̂ can be computed from the standard deviation of �̂sim. By
performing several realizations of the previous procedure, one
can estimate the p value of the fit by computing the fraction of
simulated datasets where the simulated statistic is larger than
the empirical one.

APPENDIX D: PERFORMANCE ON
SYNTHETIC DATASETS

Once the methodology for merging datasets has been
presented together with the different goodness-of-fit tests,
it is important to check the performance of the method on
synthetic data. In order to carry out this analysis, two untrun-
cated power-law-distributed datasets with exponents γ1 and
γ2, lower cut-offs x(1)

min and x(2)
min, and sizes n1 and n2, were

generated. The sizes of both datasets were considered to be
equal n1 = n2 so as to simplify the analysis.

The global exponent �̂ of the merged catalogs was esti-
mated according to the methodology exposed in the main text
and the empirical LRT statistic 2Re was computed according
to the methods exposed in Appendix B. Given that the dif-
ference on parameters between model α and β in this case is
1, the critical value of the test with a significance level equal
to 0.05 is 2Rc = 3.84. If the empirical LRT statistic 2Re is
found to be larger than the critical one, then one rejects the
null hypothesis that the simpler model α is good enough to
describe data and, consequently, more parameters are needed.
Once the global exponent and the likelihood ratio statistic
were found, the two different goodness-of-fit tests exposed in
Appendix C were performed.
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The analysis was performed for different dataset sizes
as well as different power-law exponents γ1 and γ2. The
results of the method for synthetic datasets are shown in
Table VI. Five groups are presented depending on the relative
difference δγ between exponents. The p values of the CKSD
and the KSDMD goodness-of-fit tests have been computed
with 104 Monte Carlo simulations (see Appendix C for more
details).

In order to compare our results with a test that checks
whether two power-law exponents are significantly different
or not, the pnorm value of the z test exposed in Ref. [54] is
also shown. These p values can be computed by assuming
that, for a sufficiently large sample sizes, the z statistic follows
a normal distribution with zero mean and standard deviation
equal to 1.

As one would expect, if both datasets have exactly the
same power-law exponent, the null hypothesis that variable X
is power-law distributed for all the datasets with the global

exponent �̂ is not rejected (this has to happen in the 95%
of the cases, for a significance level equal to 0.05). When
the CKSD goodness-of-fit test rejects the null hypothesis of
a power-law distribution with a global exponent, the z test
also rejects the null hypothesis of considering γ1 = γ2. The
same does not apply for the KSDMD goodness of fit test,
where some fits yield to nonrejectable p values, whereas the z
test clearly rejects the null hypothesis. In this sense, one can
consider that the KSDMD statistic is less strict than the CKSD
statistic, which has therefore more power.

However, for the sample sizes which are involved in this
work, both goodness-of-fit tests reject the null hypothesis for
sufficiently large difference in the exponents. It can also be
seen that the null hypothesis is rejected independently on
the goodness-of-fit test for those fits in which the likelihood
ratio statistic exceeds the critical value 2Rc = 3.84. This
fact justifies the decision of performing the LRT before the
goodness-of-fit test.
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