The occupation of a box as a toy model for the seismic cycle of a fault
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We illustrate how a simple statistical model can describe the quasiperiodic occurrence of large
earthquakes. The model idealizes the loading of elastic energy in a seismic fault by the stochastic
filling of a box. The emptying of the box after it is full is analogous to the generation of a large
earthquake in which the fault relaxes after having been loaded to its failure threshold. The duration
of the filling process is analogous to the seismic cycle, the time interval between two successive
large earthquakes in a particular fault. The simplicity of the model enables us to derive the statistical
distribution of its seismic cycle. We use this distribution to fit the series of earthquakes with
magnitude around six that occurred at the Parkfield segment of the San Andreas fault in California.
Using this fit, we estimate the probability of the next large earthquake at Parkfield and devise a
simple forecasting strategy. © 2005 American Association of Physics Teachers.
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I. INTRODUCTION

In reporting the rnechanlsrn of the great California earth-
quake of 1906, Reid' presented the elastic rebound theory. It
asssumes that an earthquake is the result of a sudden relax-
ation of elastic strain by rupture along a fault (a rupture
surface between two rock blocks that move past each other).
This theory extended earlier insights into the relatlon be-
tween earthquakes and faults by other geologlsts especially
Grlbert McKay, and Koto.” Since its formulation, it has
been the basis for interpreting the earthquakes that occur in
faults in the Earth’s upper, fragile crust.

According to Reid’s theory, elastic energy slowly accumu-
lates on a fault over a long time after the occurrence of an
earthquake, as the rock blocks on both sides of the fault are
strained by tectonic forces. When the strain is large enough,
the system relaxes by fast rupture and/or frictional sliding
along the fault during the next earthquake. The elastic waves
generated by this sudden event are the seismic waves that
seismometers detect.

The tectonic loading and relaxation process of a fault is
cyclic. The seismic cycle is the time interval between two
successive large earthquakes on the same fault, frequently
called characteristic earthquakes If the seismic cycle were
periodic, earthquake prediction would be easy. There is in-
creasing information about earthquake occurrences in the
seismic record, compiled with hlstorrcal data and recognition
of ancient large earthquakes on faults.” These data show that
the seismic cycle of any given fault is not strictly periodic.
The reason is that the tectonic loadmg and relaxation of a
fault are complex nonlinear processes. Moreover faults oc-
cur in topologrcally complex networks,” and an earthquake
occurring in a fault influences what occurs in other faults.'”

The duration of the seismic cycle is not constant, but fol-
lows a statistical distribution that can be empirically deduced
from the earthquake time series.!! This distribution, if it were
known, could be used to estimate the probability of the next
earthquake. However, it is not well known, because there are
little data (typically less than ten) in the earthquake time
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series for any given fault or fault segment.” To use this
probabilistic approach, it is convenient to fit the data to a
theoretical statistical distribution.

Especially since the 1970s,'*71* earthquake recurrence is
frequently considered as a renewal process,19 20'in which the
times between successive events, in this case the large earth-
quakes in a fault, are assumed to be independent and identi-
cally distributed random variables. In this interpretation, the
expected time of the next event does not depend on the de-
tails of the last event, except the time it occurred. In combi-
nation with elastic rebound theory, the probability of another
earthquake would be low just after a fault-rupturing earth-
quake, and would then gradually increase, as tectonic defor-
mation slowly stresses the fault again. When an earthquake
finally occurs, it resets the renewal process to its initial state.
Several well-known statistical distributions (such as the
gamma,21 lc)g-normal,22 and Weibu1116’21’23’24) have been
used to describe the duration of the seismic cycle and to
calculate the conditional probabilities of future earthquakes.
These distributions also have been used as failure models for
reliability and time-to-failure problems.25

More recently, many numerical models have been devised
for s1mu1atmg the tectonic processes occurring on a seismic
fault.’®*” These models can generate as many synthetic
earthquakes as desired,”® so the statistical distribution of the
time intervals between them can be fully characterized.”
Two hi %hly idealized models are the Brownian passage time
model,™ and the minimalist model.*' ® Their seismic cycle
distributions have been used as renewal models, to fit actual
earthquake series and estimate future earthquake
probabilities.30 33.34 They, as well as the gamma, log-normal,
and Weibull distributions, provide a reasonably good fit to
the existing data. 213334 The renewal models have been
widely applied, particularly in Japan * and in the United
States,™ to estimate the probabilities of the next large earth-
quake for particular faults.

This paper aims to explain how a renewal model can fit
the series of seismic cycles in a particular fault, and how it
can be used to estimate the probability of the next large
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earthquake in the fault. For this purpose we will use the
process of stochastic occupation of a box to visualize the
progressive loading of a seismic fault. This box model will
be used to fit the series of characteristic earthquakes, with
magnitude around 6, which have occurred on the Parkfield
segment of the San Andreas fault in California.

In Sec. IT we present the data of the Parkfield series, and
compute its mean, standard deviation, and aperiodicity (co-
efficient of variation). The presentation of these data is im-
portant for appreciating the design and tuning of the subse-
quent model. Section III is devoted to a detailed presentation
of the box model. In Sec. IV the parameters of the model will
be tuned to fit the Parkfield data series. The comparison be-
tween the model and the data is made in Sec. V, and the
annual probability of occurrence of the next large shock at
Parkfield is calculated. In Sec. VI we introduce a simple
forecasting strategy for the box model and illustrate its ef-
fectiveness for the Parkfield sequence. In Sec. VII we present
our conclusions.

II. THE PARKFIELD SERIES

The San Andreas fault runs for 1200 km, from the Gulf of
California (Mexico) to just north of San Francisco, where it
enters the Pacific Ocean. Fortunately, it does not slide or
break in its whole length as a single earthquake. Rather, as
for other long faults, each earthquake ruptures only one or a
few sections (segments) of its length. During the last century
and a half, several earthquakes with magnitude around 6
have occurred along a 35-km-long segment of the San An-
dreas fault that crosses the tiny town of Parkfield, CA. The
apparent temporal regularity of this series has lead to exten-
sive seismic monitoring in the area.’” Including the most
recent event, this Parkfield series’”*® consists of seven
shocks which occurred on 9 January 1857; 2 February 1881;
3 March 1901; 10 March 1922; 8 June 1934; 28 June 1966;
and 28 September 2004. The durations (in years) of the six
observed seismic cycles are ¢;=24.07, ¢,=20.08, c3=21.02,
c4=12.25, ¢5=32.05, and c¢4=38.25. The mean of this
series is

18
m= 32 ¢;=24.62 yr, (1)

i=1

and its sample standard deviation (square root of the bias-
corrected sample variance) is

| 6 12
s=| ——> (¢;—m)? =9.25 yr. (2)
6-1.5
The coefficient of variation, or aperiodicity, is

=0.3759. (3)

a=

II1. THE BOX MODEL

In this section we will introduce a renewal model based on
a simple cellular automaton. Cellular automata models are
frequentlg used to model earthquakes and other natural
hazards.” These models evolve in discrete time steps, and
consist of a grid of cells, where each cell can be only in a
finite number of states. Each cell’s state is updated at each
time step according to rules that usually depend on the state
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Fig. 1. Sketch of the box model. Balls are thrown at random until all the
cells of the box are full. Then the box is emptied and a new cycle starts.

of the cell or that of its neighbors in the previous time step.
For example, a grid of cells can represent a discretized fault
plane, and the rules can be designed according to certain
friction laws,27 and include stress transfer>*'*? and the me-
chanical effects of fluids.*’ In the simplest models,3]’44 these
details are ignored: the model is driven stochastically, there
are only two possible states for each cell, and the earth-
quakes are generated according to simplified breaking rules.
The model proposed here is of this last type. It is simple,
easy to describe analytically, and generates a temporal distri-
bution of seismic cycles comparable to that of an actual fault.

A. The rules

Consider an array of N cells. The position of the cells is
irrelevant, but we can assume that they are arranged in the
shape of a box (see Fig. 1). At the beginning of each cycle,
the box is completely empty. At each time step, one ball is
thrown, at random, to one of the cells in the box. That is,
each cell has equal probability, 1/N, of receiving the ball. If
the cell that is chosen is empty, it will become occupied. If it
was already occupied, the thrown ball is lost. (Thus, each
cell can be either occupied by a ball or empty.) When a new
throw completes the occupation of the N cells of the box, it
topples, becoming completely empty, and a new cycle starts.
The time elapsed since the beginning of each cycle, ex-
pressed by the number of thrown balls, will be called n. The
duration of the cycles is statistically distributed according to
a discrete distribution function Py(n).

The box represents the area of the fault or fault segment,
and the random throwing of balls represents the increase of
regional stress. This randomness is a way of dealing with the
complex stress increase on actual faults. The occupation of a
cell by a ball stands for the elastic strain induced by the
stress in a patch or element of the fault plane. The loss of the
balls that land on already occupied cells mimics stress dissi-
pation on this plane. The total elastic strain (or conversely
the total potential elastic energy) accumulated in the fault is
represented by the number of occupied cells. This number
gradually grows up to the limit N (analogous to the failure
threshold of the fault), and the toppling of the box represents
the occurrence of the characteristic earthquake in the fault. It
is easy to simulate the evolution of this system with a Monte
Carlo approach.

This model is similar to that introduced by Newman and
Turcotte in Ref. 44. The difference is that their model is a
square grid of cells in which the topology is relevant: they
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consider that the characterlstlc earthquake occurs when a
percolating cluster® spans the grid. This cluster happens be-
fore the grid is completely full.

B. Some formulas of the box model

To describe the box model analytically, it is convenient to
recall some elements of the geometric distribution. Consider
the probability that exactly x independent Bernoulli trials,
each with a probability of success p, will be required until
the first success is achieved. The probability that (x—1) fail-
ures will be followed by a success is (1—p)*'p. The result-
ing probability function,

fesp)=(1-p)~'p, (4)

is known as the geometric distribution. Its mean and variance
are

1 1
(==, o’= )
4
We now consider the box model further. In each cycle, the
filling of the box proceeds sequentially and continues until
the Nth cell is occupied. Because each of these sequential
steps is an independent process, the mean number of throws
to completely fill the box will be

My =y + X+ - + oy, (6)

where (x;)y is the mean number of throws it takes to fill the
ith cell.

Because the filling of the ith cell is geometrically distrib-
uted with p;=(N+1-i)/N, it follows that

N

Iy=—"7— (=1,2,...,N 7

(= G ) )
and therefore

=1+ 8

<n>N % N+l— (8)

Relations similar to Egs. (6) and (8) can be written for the
variance of the number of thrown balls to fill the box,
namely

{ N+1-i

L Nisi

F=circie =043 N+1I_Vl 9)
)

and, consequently, the standard deviation is

N . 1/2
oy = [E M} . (10)

o (N+1-0)

The aperiodicity of the series, ay, for a given N is

ay=-——. 11
v (11)
The mean and the standard deviation of the box model can
be calculated by summing the N—1 terms of Egs. (8) and
(10). For N= 10, these two equations can be approximated
(with an absolute error <0.01) by their asymptotic
expressions:
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Fig. 2. Discrete distribution function for the duration (in time steps, n) of the
seismic cycle in the box model with N=11.

(n)y ——— N(C+InN) + 1, (12)
N—x

where C=0.577 2157 is Euler’s constant, and
{ﬂl 1+C+lnN]”2

6 N (13)

OoN—
N—®

and the aperiodicity can be estimated by using Eq. (11) with
Eqgs. (12) and (13).

The function Py(n) is not as easy to obtain as its mean and
standard deviation. It is given by

N-1 1 <\ n—1
P =3 - 1)1”( 1)(1—1) : (14)

N

and the accumulative probability function, Ay(n), is

N-1 1 A\ n
Ay(n) = EPN(; —1—2( 1)f+‘( 1><1—]%,) %V
(15)

We have deduced Eq. (14) by means of a Markov chain
approach analogous to the one used in Refs. 31 and 32. This
derivation is omitted here because of its length.

IV. FITTING THE PARAMETERS
OF THE BOX MODEL

We will fit the Parkfield series to the accumulative prob—
ability function, Eq. (15), using the method of moments.”
Another method that could be used is that of maximum
likelihood.?' We have seen in Sec. III that the aperiodicity in
the box model depends only on N. Thus, we will choose N
for which the aperiodicity is the closest to that of the Park-
field series, that is, a=0.3759. The result is N=11, for
which, from Eq. (11), the aperiodicity is @=0.3752.

From Eq. (8) the mean value of n for N=11 is (n)y=1;
=33.22. Because the actual mean of the Parkfield series is
m=24.62 yr, one ball throw in the model is equivalent to 7
=24.62 yr/33.22=0.74 yr=9 months. The discrete distribu-
tion function for the duration of the seismic cycle in a box
model with N=11, P;;(n) is shown in Fig. 2.

In Fig. 3 we plot the evolution of the number of occupied
cells for ten cycles with N=11. Note the fluctuations in the
duration of the cycles, which are consistent with the mean
and the standard deviation of the series. Note also that the
occupation increases rapidly just after a toppling, and then
slows down. This increase is due to the fact that, as a cycle
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Fig. 3. Plot of the number of occupied cells during ten cycles of a box
model with N=11.

progresses, there are more occupied cells, and thus it is less
probable for an incoming ball to land on an empty cell. If p,
is the fraction of occupied cells at time step n, there is a
probability 1-p, for the next ball to be thrown to an empty
cell. Because such a throw would increase p by 1/N, the
mean p at step n+1 is

1
(pus1) ={pn) + SL1 = o). (16)

The box is empty at the beginning of the cycle (py=0), so
from Eq. (16), the mean value of p, is

1\”
(Pn>=1—<1—ﬁ> , (17)

which approaches one asymptotically.

In real faults, the strain also does not increase uniformly
during the seismic cycle. Instead, it follows a trend similar to
that of the number of occupied cells in the box model: the
loading rate is faster just after a large earthquake, and de-
creases over time.

The relaxation of a real fault by means of a large earth-
quake reduces the stress in the system. Thus a minimum time
has to elapse before the fault accumulates enough stress to
produce the next large earthquake. This effect is called stress
shadow.'® In the box model there exists a stress shadow: a
characteristic earthquake cannot occur until the Nth step in
the cycle. According to the box model, this minimum time
for the Parkfield series is 7N =8 yr.

V. EARTHQUAKE PROBABILITIES AT PARKFIELD

We now evaluate the quality of the box model fit for the
Parkfield series and estimate the probability of the next
earthquake in this fault segment. In Fig. 4(a), the empirical
distribution function of the Parkfield series is plotted. It is an
accumulative step function ranging from 0 to 1.0, with a
jump 1/6 at each of the six observed recurrence intervals c;.
The accumulated distribution of the box model in Eq. (15)
for N=11 with 7=0.74 yr also is drawn. In Fig. 4(b), we
show the residuals of the fit, which do not surpass 7.5%. The
equivalent fits to these data, made by using the renewal mod-
els cited in Sec. I, give very similar results.”*

Now we calculate the yearly probability of the next earth-
quake, that is, the conditional probability of the next shock
occurring in a certain year, given that it has not occurred
previously. For the box model it is
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Fig. 4. (a) Fit of the accumulative distribution of the box model to the
accumulated histogram of the Parkfield earthquake sequence. (b) Residuals
of the fit, evaluated at the midpoints of the horizontal segments of the
accumulated histogram.

_ AN(n+ 1/7') —AN(n)
PN = T (18)

Note that 1/7 is the number of time steps of the box model
corresponding to one year. After calculating P, from Eq.
(18), it is necessary to rescale the abscissas, n, to actual
years, nT+t,, where ¢, is the calendar year at which the last
earthquake occurred (1,=2004.75 for the Parkfield series). In
Fig. 5 we plot the yearly probability for the new cycle at
Parkfield according to the box model. During the first eight
years after the last earthquake at Parkfield (which occurred in
September 2004), the box model indicates that another big
shock should not be expected. From that time on, the prob-
ability of the next earthquake increases, tending to a constant
equal to 11%.

In the seismological literature there is a well-known ques-
tion about the yearly probability for a time much longer than
the mean value of the series:*® “The longer it has been since
the last earthquake, the longer the expected time till the

0.12 = T T T T
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.10+ Parkfield series — ™ 1
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=z : probability = 1%
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Fig. 5. Yearly probability of the next characteristic earthquake at Parkfield,
according to the box model.
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next?” Sornette and Knopoff4 ? have discussed some statisti-
cal distributions that lead to affirmative, negative, or neutral
answers to it. The result shown in Fig. 5 leads us to conclude
that the box model produces a neutral answer. The reason is
that for a long cycle duration (large n), the Py(n) of the box
model decays exponentially, and asymptotically the box
model behaves as a Poisson model, in which the conditional
probability of occurrence of the next earthquake is a
constant.

VI. A SIMPLE FORECASTING STRATEGY

In earthquake forecasting an “alarm” is sometimes turned
on when it is estimated that there is a high probability for a
large earthquake to occur.”’ If a large shock takes place when
the alarm is on, the prediction is considered to be a success.
If it takes place when the alarm is off, there has been a
failure to predict. The fraction of errors, f,, is the number of
prediction failures divided by the total number of large earth-
quakes. The fraction of alarm time, f,, is the ratio of the time
during which the alarm is on to the total time of observation.
A good strategy of forecasting must produce both small f,
and f,,, because both the prediction failures and the alarms
are costly. Depending on the trade-off between the costs and
benefits of forecastirlg,5 we can try to minimize a certain
loss function, L. For simplicity, we will consider a simple
loss function defined as

L=f,+f.. (19)

A random guessing strategy (randomly turning the alarm
on and off) will yield L=1, a result which can be easily
understood. The alarm will be on, randomly, during a certain
fraction of time, f,. Thus, there will be a probability equal to
f, for it being on when an earthquake eventually occurs (and
a probability of 1—f, for it being off). The result is that f,
=1-f,. As a trivial special case, if the alarm is always on
(f,=1), then all the earthquakes are “forecasted” (f,=0).
Conversely, all the earthquakes are failures to predict if the
alarm is always off. The random guessing strategy is consid-
ered as a baseline, so a forecasting procedure makes sense
only if it gives f,+f,<1.

We can use the box model fit to the Parkfield series to
implement a simple earthquake forecasting strategy. The
strategy consists of turning on the alarm at a fixed value of n
time steps after the last big earthquake and maintaining the
alarm on until the next one.**** Then the alarm is turned off
and the same strategy is repeated, evaluating f,, and f, for all
the cycles. The result is

fn) =2 P(n'), (20)
n'=1
and
o > P')(n' —n) o
a\n)= P . 21
En,zoP(n')n’

These relations are illustrated in Fig. 6(a), together with L
=f,+f,. For each value of N, L(n) has a minimum at a spe-
cific value of n, n"(N). As can be seen in Fig. 6(a), n"(11)
=20, for which
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Fig. 6. (a) Fraction of errors (f,), fraction of alarm time (f,), and loss
function (L=f,+f,) as a function of n for the forecasting strategy in a box
model with N=11. (b) Error diagram for this strategy. Each point on the
curve is the result of using a different value of n. The large dot corresponds
to ", for which the loss function reaches a minimum. The diagonal lines are
isolines of L. A random guessing strategy would render L=1.

f.(n")=0405, f,(n)=0.085, L(n")=0490. (22)

For the Parkfield sequence, n” corresponds to
m" =148 yr. (23)

If the distribution derived from the box model correctly de-
scribes the recurrence of large earthquakes at Parkfield, the
alarm connected at this time since the beginning of the
cycles and disconnected just after the occurrence of each
shock would yield the results given in Eq. (22). Note that this
time is substantially smaller than the mean duration of the
cycles, m=24.62 yr.

The quality of the model-earthquake forecast also can be
understood visually by means of an error diagram, in which

f. is plotted versus fa.s1 This kind of plot is similar to the

receiver operating characteristic diagran;,2 used, for example,
to test the success of weather forecasts.

VII. SUMMARY

The generation of large earthquakes in a seismic fault in-
volves slow loading of elastic strain (or, conversely, elastic
energy), and release through rupture and/or frictional sliding
during an earthquake. The duration of this process is the
seismic cycle, which is repeated indefinitely, leading to a
series of recurrent shocks. We have illustrated this process
with a very simple model. The loading of elastic strain is
represented by the stochastic filling of a box with N cells.
The emptying of the box after its complete filling is analo-
gous to the generation of a large earthquake, in which the
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fault relaxes after having being loaded to its failure thresh-
old. The duration of the filling process is thus equivalent to
the seismic cycle.

The statistical distribution of seismic cycles in the box
model gjust as the distributions of the Brownian passage time
model®® and the minimalist model31733) can be used to fit
actual earthquake series and to estimate earthquake prob-
abilities. The conditional probability of the box model has
two interesting features. First, after a large earthquake, there
is a period of stress shadow during which a new large earth-
quake cannot occur. Second, from this time on the probabil-
ity continuously increases, approaching a constant
asymptotic value. By using a simple forecasting strategy, we
have shown that the earthquakes in the model are predictable
to some extent.

We hope that our discussion will be a useful educational
tool for introducing several important geophysical and statis-
tical concepts to graduate and undergraduate students. It
could illustrate how to make quantitative estimates of a natu-
ral phenomenon as popular and as mystifying as earthquakes.
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The values of f, plotted in Fig. 6 and used to estimate n"
were determined by a Monte Carlo simulation of the model
instead of using Eq. (20). If, at a given time step in the
simulation, the “alarm” was sounded and the model earth-
quake occurred, the latter was deemed as successfully fore-
casted. This assumption is incorrect, and leads to a value of
f. smaller than the true one in Eq. (20). Given that n is the
number of time steps before sounding the alarm, if the earth-
quake occurs at the nth time step, the alarm has still not been
sounded, and the earthquake should be considered a predic-
tion failure. An earthquake in the box model cannot occur
before the Nth time step of each cycle, so f,=0 if and only if
n<N. This error caused f,=0 also for n=N.

We give here a revised version of Fig. 6. The correct val-
ues of f, and L=f,+f, are only slightly higher than those
previously published. This correction changes the value of n”
(19 time steps, instead of 20). It also modifies the results in
Eq. (22),

f.(n")=0432, f.(n")=0.084, L(n")=0.516, (1)
and the value in Eq. (23) for the Parkfield sequence:
m" =141 yr. (2)

We apologize for this error and hope that this note will
serve to clarify the convention for calculating f, with discrete
probability distributions.
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This is an informal appendix to the paper “The occupation of a box as a toy model for the seismic
cycle of a fault” (American Journal of Physics, 73(10), 946-952), where we illustrated how a simple
statistical model can describe the quasiperiodic occurrence of large earthquakes in a seismic fault.
This appendix describes some proofs that could not be included in the original paper because of

their length. Namely, we deduce here:

(1) the discrete probability distribution for the duration of the seismic cycle in the model;
(2) the asymptotic mean and standard deviation of that distribution (when the number of cells in

the model tends to infinity); and

(3) the asymptotic conditional probability in this model (when the time since the last earthquake

tends to infinity).

I. DISCRETE PROBABILITY DISTRIBUTION
FOR THE DURATION OF THE SEISMIC CYCLE

The discrete probability distribution for the duration
of the seismic cycle in the box model was named Py (n),
and written in Eq. 14 of the original paper®.

The box model is a Markov chain?, and this enables
to deduce Py (n) by using a technique® that we already
applied to the Minimalist Model?, which is also Marko-
vian. A Markov chain is a stochastic process defined by a
discrete random variable X that 1) can only take a finite
number of values, and 2) whose value at the next time
step depends only upon the value at the present time
step, being independent of the way in which the present
value arose from its predecessors. In other words, a
Markov chain has no memory: the evolution of a Markov
system at any time depends only on the state of the sys-
tem at that time and not on the history of how the state
was achieved.

In a box model with N cells, the state is only deter-
mined by the number of occupied cells, that here will be
called v. The succession of values of this random variable
defines the stochastic process of the box model. Note that
exactly which cells are occupied is not relevant, but only
how many of them are. The number of stable states in
the model is N; in each of them v takes one value in the
set {0,1,2,3...(N—=1)}. If N cells become occupied, the
system instantly changes to the empty state. It does not
reside any time step in the state of complete occupancy,
so this is not a stable state.

The value of v in the next time step only depends on
the value of v in the current time step, so it follows the
definition of a Markov chain. For example, if the system
is empty (v = 0), in the next time step, for sure (with

probability equal to 1) it will move to the state of v = 1.
In this second step the fraction of occupied cells is 1/N,
and the fraction of empty cells is (N — 1)/N. So, in the
third time step, with probability (N —1)/N another cell
will be occupied by a ball (v becoming equal to 2), or
the model will remain in v = 1 with probability 1/N
(the probability of the incoming ball landing in the only
occupied cell). In general, for v < N — 1, there is a
probability (N — v)/N of moving to v + 1 in the next
time step. If v = N — 1, there is a probability (N —1)/N
of moving to v = 0 (passing through v = N, but not
residing any moment there). In each time step there is a
probability v/N of residing in the same state during the
next time step.

As for any other Markov chain, for the box model we
can define a transition matrix M, a table that contains all
the transition probabilities of passing, in one time step,
from any of the states of the system to any of the others
or to itself. Each element of the matrix will be denoted
in the standard way as M(¢, 7), being ¢ the row (from top
to bottom), and j the column (from left to right). Each
element gives the probability of moving from the state
X =1 in the time step n to the state X = j in the step
n+ 1

M(i, j) = P(Xn41=j | X =1). (1)

The transition matrix of the box model is different for
each N: as shown above, the transition probabilities de-
pend on N, and because there are N stable states, the
size of the matrix is V x N. Thus we will denote the ma-
trix for the box model as M. Denoting the occupation
state with v as above, the element My (4, 7) will be the
transition probability from v =i —-1tov =7 —1:

My (i,j) = Pni1=j—1|vn=i—1). (2



The cause for this difference in notation is that v ranges
from 0 to N — 1, while ¢ and j range from 1 to N.

Let us now deduce the discrete probability distribution
for the duration of the seismic cycle, using the formalism
of Markov chains. The discrete distribution Py(n) de-
fines the probability that, for a box model of N cells,
the seismic cycle lasts n time steps. The seismic cycle
starts when v = 0, and lasts until v = 0 again. Ex-
cept for N = 1, which is a trivial, special case of the
model, there is no possible transition in one time step
from v = 0 to v = 0 (remember that this impossibility
causes the stress shadow in the model). Speaking more
generally, in the first n — 1 time steps of the cycle there
is no transition to the state v = 0. Because of this, to
calculate Py (n) we will first deduce the probability that
the system evolves from v =0torv =N —1inn—1 time
steps, without having passed through v = 0 in between.
To calculate the probability that the system evolves from
v=N —1to v =0 is simpler. At the beginning of the
n-th step the system has v = N — 1. Then a new particle
is added to the only one empty cell, so the occupation
becomes v = N, but instantly drops to v = 0 at the end
of the step. The transition in the time step is thus from
v =N —1to v =0. The probability for this to happen
is 1/N, the chance for the incoming particle to land in
the only empty cell of the array when v = N — 1.

Thus, the deduction of Py (n) proceeds as follows:

1. Deduce the probabilities of passing between the
different states of the system in one time step.
These transition probabilities will be tabulated in
the transition matrix My.

2. Remove from My the possibility of intermediate
transitions to ¥ = 0. The resulting matrix will be
called My.

3. Calculate the transition probabilities of passing be-
tween the different states in n — 1 time steps and
neglecting the possibility of passing through the
state with v = 0. The result is a new matrix,
Ty =M%

4. One of the elements of this matrix will indicate the
probability of passing from v = 0 tov = N — 1
in n — 1 time steps without having passed through
v = 0 in between. Multiplying this probability by
1/N we will obtain Py (n).

Let us proceed in this order. The transition matrices
for N equal to 2, 3 and 4 are as follows:

For N =2,
01 1/02
)R (.
1) =
for N = 3,
010 030
M;=|0:2]=2(012]; (4)
12 102

and for N = 4,
0100 0400
0:30) 1{o0130
Mi=19022|=1(0022] (5)
%00% 1003

All the elements of these matrices are nonnegative (they
are probabilities) and the sum of all the elements of any
row is always 1. These two are necessary and sufficient
properties of transition matrices of Markov chains. These
matrices show evident regularities, which enable to de-
duce by inspection that the matrix for any N is

0 N 0 0 0
0 1 N—-1 0 0
1 0 0 2 N-2 ... 0
My=%1.. . T R )
0 0 0 0O N—-2 2
1 0 0 0 0 N-1

Note that the matrix multiplied by 1/N has only three
non-null diagonals, all of them trivial. The first one is
the sequence N, N — 1, N —2...2, the second one is the
sequence 0,1,2...N — 1, and the third one is only the
bottom left element, which is always 1.

To calculate Py (n) the next step (the second one in the
list above) is to prune from this matrix the transitions
to v = 0. The only possible transition to ¥ = 0 is from
v = N —1, and the probability for this transition is given
by the bottom left element My (N, 1). Nullifying this el-
ement, the resulting matrix, M’ y, is particularly simple,
because it has only two trivial, non-null diagonals:

0 N 0 0 0
0 1 N—-1 0 0
1 0 0 2 N -2 0
My=w| . (7)
0 0 0 0 N—-2 2
0 0 0 0 0 N-1

Now (third step of the list) it is necessary to compute a
new matrix, Ty, which indicates all the transition prob-
abilities, in n — 1 time steps, between all the states, with
the restriction that passing from v = N —1tov =0
is forbidden. In Markov chains, the m-step transition
probability matrix is the m-th power of the transition
matrix3. So the new matrix is

Ty =My (8)

This operation is done through the Jordan decom-
position of M’y.  The element Ty(1,N) of this
matrix is the transition probability from v = 0 to
v =N —1in n — 1 time steps and with the transition
v=N-1— v =0 forbidden. As the probability of
passing, in the next time step, from v =N —1tov =0
is 1/N, Py(n) is obtained by multiplying that element
by 1/N. The results, for N = 2 and N = 3 are as follows.



For N =2,
2-1
1 1 2\ .._ s
i=o LN
1
227[0+2]§ (9)
and for N = 3,

By inspection, the result for a generic N is

= & (D)) -

(Eq. 14 of the original paper).

II. ASYMPTOTIC MEAN OF Px(n)

The mean duration of the cycle in the box model was
indicated in Eq. 8 of the original paper:

NN

:1 _—

(i +;N+1—i

=1+ N + N + +N+N—

o N—-1 N-=-2 2 1
1 1 1 1 1

=N|—4+—+— .+ =4+ | (12
[N+N—1+N—2+ +2+1]()

The asymptotic value of this expression can be ob-
tained considering that®

Noq 1 1\2
- L C+IN+——0(—= 1
P C+In toN O(N) , (13)

i=1

where C' ~ 0.5772157 is Euler’s constant. Multiplying
this equation by N we obtain the asymptotic mean of
Py (TL),

DN | =

(Eq. 12 of the original paper). The absolute error of this
approximation is < 0.01 for N > 9.

IIT. ASYMPTOTIC STANDARD DEVIATION
OF Pn(n)

The variance of Py(n) was indicated in Eq. 9 of the
original paper:

To simplify the sums, we can change the variable to
k=N +1—1i. Because ¢ ranges from 1 to N, k will
range from N to 1. Then the above equation can be
rewritten as

N 1 N N a2 Ny
oN = 3 Q_ZT:Z]{__Z?:
k=1 k=1 — k=1 k=1
(x) =5
N N
Ny LNy L (16)

The first sum in the right-hand side of this expression
can be simplified to

N 00
1 1 <1
S ), me
k=1 k=1 N
2 o 2
G B R (17)
6 kKly 6 N

Inserting Eq. 13 and this result, Eq. 16 in the limit of
N — oo can be written as

21
N2 (T )
(%)

1 1\?
C’—i—lnN—i———O(—)]:

-N
2N N

27r2 1
:NF—N—CN—NlnN—iz

o T2 1
=N F—N(l—i—C—HnN)——:

2
2 1+4C+IlnN 1
= N? {F— v _2N2]' (18)

The asymptotic standard deviation is the square root
of the above equation,

6 N 2N

oy —— N
N—o0

2 14C+IN 1 Y2
| B C



Because N — oo, the term —1/2N? can be dropped, so
the equation can be further simplified to

2 14+C+InN]Y?
oy—— N |—— ———

(Eq. 13 of the original paper). This approximation has
an absolute error < 0.01 for N > 3.

The asymptotic aperiodicity, obtained by dividing
Eq. 20 by Eq. 14, has an absolute error < 0.0001 for
N > 10.

IV. ASYMPTOTIC CONDITIONAL
PROBABILITY

To deduce the asymptotic conditional probability in
the box model we will first consider the asymptotic value
of Py(n) when n — oo. This value is the first, largest
term in the sum (when j =1 in Eq. 11), namely

-1
-3) "o

where we have denoted a =1 —1/N.

For calculating the asymptotic conditional probability
we need to deduce the value of the cumulative probability
distribution, An(n), for that large n. This is easier to do
by defining the sum

Pn(n) —— (21)

n—00

A =3 a = 2 (22)

1—a

Considering that n is large enough, Py(n) can be re-
placed by its asymptotic value (Eq. 21), which is the
term summed in A’y (n). Then it holds that

The conditional probability (Eq. 18 of the original pa-
per) is:

An(n+1/1) - AN(n).

Pr(Nom) = = =)

(25)

Inserting Eqgs. 22 to 24, it results that

1-Ay(n+1/7+1)—[1 - A\(n+1)]
Al (n)
~Ay(n41) - Ay(n+1/7+1)
Ay (n)
_an+1/’r+171

P, (N,n)

n—oo

an+171

—a—atVr :a<1—a1/7) =

Il
/N
—

I
2|~
~

In the original paper we were interested in the yearly
conditional probability for the next large earthquake at
Parkfield. In order to fit the series of previous earth-
quakes, IV was chosen as 11 cells, and one time step cor-
responded to 7 = 0.74 years. Substituting these values
in the above equation, the asymptotic yearly probability
when a long time has passed since the last large earth-
quake is 0.11 (the value of 11% cited in the original pa-

per).
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